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ABSTRACT 
 
Finding the relationships between information measures and statistical constants leads to the applicability of information 
theory to the field of statistics. In the existing literature of information theory, there are many well known information 
theoretic measures, each with its own merits, limitations and areas of applications. In the present communication, we 
have developed new generalized parametric divergence measure and provided its applications along with the other 
parametric information theoretic measure to the field of Statistics by establishing  the relationships of information 
contents with some statistical constants of Gaussian distribution. 
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INTRODUCTION 
 
In the literature, there exist certain analytical expressions 
for the entropy of univariate continuous distributions 
studied by Lazo and Rathie (1978) and Cover and 
Thomas (1991) whereas for multivariate distributions 
very few results have been provided by Ahmed and 
Gokhale (1989). Of course, Darbellay and Vajda (2000) 
developed a series of analytical expressions for the 
entropy and the mutual information of continuous 
multivariate distributions. 
 
Another study Ginebra (2007) provided the applications 
of information measures to the field of statistics by stating 
a minimal set of requirements that must be satisfied by all 
such measures. By doing so, the author provided the links 
of information and uncertainty in a probability 
distribution. Kitsos and Toulias (2010) introduced a three-
parameter generalized normal distribution to study the 
generalized measures of entropy and for this generalized 
normal measure, the Kullback-Leibler’s (1951) 
information measure was evaluated to extend the well 
known result for the normal distribution. Parkash and 
Thukral (2010) emphasized that statistics is extensively 
used for the measurement of statistical constants whereas 
measures of information are used to study diversity and 
equitability. These two fields have been used independent 
of each other for data analysis. The authors developed the 
interrelations between the two and proved that statistical  
measures can be used as information measures. 
 
Many researchers have provided axiomatic derivations of 
Shannon’s (1948) measure of entropy, given by 
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of a discrete-variate probability distribution 
( )npppP ,,, 21 K= from different sets of plausible 

axioms where a great deal of mathematical sophistication 
and rigour has been exercised in the process. However, 
when it comes to the derivation of the corresponding 
measure 
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which is called differential entropy, for the entropy of 
continuous-variate probability distribution with density 
function ( )xf , all pretensions of rigour are given up and 
heuristic arguments are freely employed. The major 
argument in favour of (1.2) is not its rigorous derivation 
from clearly stated axioms, but the fact that it gives useful 
results. Similar arguments are used to deduce various 
measures of entropy for the continuous variate 
distributions. It is well known that the Gaussian 
distribution density has the greatest Shannon’s (1948) 
entropy of all distribution densities. All the other 
distribution densities, having the same second order 
moments as the Gaussian distribution density, have 
smaller Shannon entropy than the Gaussian density. 
 
In statistics, the entropy corresponds to the maximum 
likelihood method, in which Kullback-Leibler (1951) 
divergence measure given by 
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connects Boltzmann-Shannon entropy and the expected 
log-likelihood function. 
 
Recently, Parkash and Mukesh (2013) have developed the 
relations between parametric information measures and 
chi-square statistic by using the optimization principles. 
Further, Parkash and Mukesh (2012) have provided the 
applications of divergence measure by developing an 
optimizational principle for minimizing risk in portfolio 
analysis. Parkash and Mukesh (personal communication) 
have also investigated and introduced a new generalized 
measure of entropy and provided its applications to the 
field of queueing theory. This new entropy measure with 
real parameters α and β  is given by 
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∞<<∞−+<≠ ααββα ,1, . 
 
Some other characterizations and generalization of the 
measures of entropy and directed divergence along with 
their detailed properties have been provided by Havrada 
and Charvat (1967) and Parkash and Mukesh (2012, 
2011). 
 
In the present communication, we have developed new 
generalized information measure and established the 
relationships between information measures and the 
statistical constants for Gaussian distribution densities. 
 
2 A New generalized parametric measure of 
divergence 
 
In this section, we propose a new generalized parametric 
measure of divergence for the probability distributions 
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properties. This new entropy measure with real 
parameters α and β  is given by 
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that ( )QPD ;,βα  is a generalization of Kullback-Leibler’s 
(1951) measure of divergence. 
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Again ( )QPD ;,βα  is the generalization of Havrada-
Charvat’s (1967) divergence measure. 
 
Next, to prove that the measure (2.1) is a valid measure of 
directed divergence, we study its essential properties as 
follows: 
1) ( )QPD ;,βα  is a continuous function of 

nppp ,,, 21 K  and nqqq ,,, 21 K . 
2) ( ) 0;, ≥QPD βα  and vanishes if and only if QP = . 
3) We can deduce from condition (2) that the minimum 

value of ( )QPD ;,βα  is zero. 
4) We shall now prove that ( )QPD ;,βα  is a convex 

function of both P  and Q . This result is important in 
establishing the property of global minimum. 
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Hence, the Hessian matrix of the second order partial 
derivatives of f with respect to nppp ,,, 21 K is given by 

ijaH = , 
where 
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This Hessian matrix is positive definite. Similarly one can 
prove that the Hessian matrix of second order partial 
derivatives of f  with respect to nqqq ,,, 21 K  is positive 
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definite. Thus, we conclude that ( )QPD ;,βα  is a convex 
function of both nppp ,,, 21 K  and nqqq ,,, 21 K .  
Moreover, with the help of numerical data shown in the 
table 1, we have presented ( )QPD ;,βα  as shown in the 
figure 1. 
 
Table 1. ( )QPD ;,βα  against p  for 3,2 == αn and 1.1=β . 
Table. 1. 

P  Q  ( )QPD ;,βα  

0.0 0.5 1.4380 
0.1 0.5 0.9233 
0.2 0.5 0.5205 
0.3 0.5 0.2317 
0.4 0.5 0.0580 
0.5 0.5 0.0000 
0.6 0.5 0.0580 
0.7 0.5 0.2317 
0.8 0.5 0.5205 
0.9 0.5 0.9233 
1.0 0.5 1.4380 

 
Fig. 1. Convexity of ( )QPD ;,βα with respect to P . 
 
Under the above conditions, the function ( )QPD ;,βα  is a 
valid parametric measure of directed divergence. 
 
3 Relationships between information measures and 
Gaussian distribution 
In this section, we make use of generalized information 
measures of entropy and divergence, discussed in the 
above sections, to establish their relationships with certain 
statistical constants for Gaussian distributed random 
variables. 
 
3.1 Generalized measure of entropy of Gaussian 
distributed random variable 
We now consider the continuous version of the 
generalized two parametric measure of entropy (1.4) with 
density function ( )ξxf  given by 
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The Gaussian distribution density ( )2,σµN  with the 

expectation value µ  and variance 2σ is given by 
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An extension to a multi-dimensional Gaussian random 
variable of dimension n  provides the distribution density 
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with the expectation vector 
{ }xE=µ , 

and the covariance matrix 
( )( ){ }TxxE µµ −−=∑ . 

If we look at βα ,H , we realize that this information is 
equal to the expected value of a distribution density 
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which is a typical form of an information function. Such 
functions often contain an expected value of a quantity, 
defined as information, which consist of a distribution 
density. Shannon’s (1948) information has, for instance, 
such a form as ( )[ ]{ }xpEH ln−= . 
 
Now we insert the multi-dimensional Gaussian 
distribution density into the expectation function (3.4) and 
we get  

( ) ( )

( )

( ) ( )
, 1 1 1

2 22 2

1 11 1 1 2exp 1
. . .2 2

n n T
H d

P

α β

α β
α β

ξ
β α

ξ µ ξ µπ π

−

−
Ξ

⎧ ⎫⎡ ⎤⎡ ⎤⎪ ⎪− − +⎢ ⎥⎢ ⎥⎪ ⎪= −⎨ ⎬⎢ ⎥⎢ ⎥− ⎪ ⎪⎢ ⎥⎢ ⎥ − Σ −Σ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫
,         (3.5) 

and we use a new covariance matrix 
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To obtain the determinant new∑ , we have to calculate the 
matrix new∑ as given below 
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and thus the integral in equation (3.5) is solved. We 
therefore write 
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Thus, the given information measure depends upon the 
determinant of the covariance matrix which describes the 
uncertainty of the expectation value of the Gaussian 
distribution density. 
 
3.2 Generalized measure of divergence of Gaussian 
distributed random variable 
We now consider the continuous version of the 
generalized measure of divergence (2.1) for the 
continuous-variate probability distributions with density 
functions ( )ξpf  and ( )ξqf . This measure is given by 
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In the computation of the divergence, we have to assume 
two Gaussian distribution densities, both with scalar 
random variables, to reduce the computational effort, 
given by the equations (3.2) and 
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The dummy variable ξ is the same for both densities. 
Otherwise one of the two distribution densities would be 
independent of the integration variable and could be 
extracted out of the integral. 
 
Thus, corresponding to distribution densities (3.2) and 
(3.10), the equation (3.9) attains the following form: 
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The exponent in the equation (3.11) is given by 
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Now using equation (3.12) into equation (3.11), we get 
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in the equation (3.16), we get 
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Inserting the terms for a , b and c  from equations (3.13), 
(3.14) and (3.15) in equation (3.18), we get 
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                                                                                   (3.19) 
Thus given parametric measure of cross entropy is 
expressible in terms of standard deviations of the 
Gaussian distribution densities. 
If the expected values for both the random variables are 
equal, we get 

( )
( )

( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

+
+−−

=
+−

−

1
1

1

22
1

,

s

sD

σ
αβ

σ
βασ

σ
βα βα

βα

βα . 

                                                                                   (3.20) 
 
CONCLUDING REMARKS 
 
We have derived the relationships between the 
information measures and the statistical constants of 
Gaussian distributions to develop the link between 
information theory and statistics. With similar arguments, 
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the relations between information measures and other 
standard distributions can be studied. 
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